Рэймонд М. Смаллиан
Как же называется эта книга?
© Raymond M. Smullyan, 1978
© Перевод. Ю. Данилов, наследники, 2021
© Издание на русском языке AST Publishers, 2021
От переводчика
Что может быть более далеким от истины, чем представление о математике как о застывшей науке, давно остановившейся в своем развитии и превратившейся в своего рода свод правил для решения задач? Однако такое превратное представление об одной из самых быстро развивающихся наук современности бытует у очень многих. Между тем математика непрестанно меняет свой облик, пополняет свой арсенал новыми идеями, мощными и гибкими методами, расширяет сферу приложений, черпает новые постановки задач не только из логики внутреннего развития, но и из других областей науки.
Столь странное противоречие объясняется тем, что между рубежами, завоеванными современной математикой, и традиционно читаемыми «устоявшимися» курсами математики существует разрыв, красочно описанный замечательным представителем этой науки, педагогом и популяризатором Гуго Штейнгаузом: «В математике несравненно явственней, чем в других дисциплинах, ощущается, насколько растянуто шествие всего человечества. Среди наших современников есть люди, чьи познания в математике относятся к эпохе более древней, чем египетские пирамиды, и они составляют значительное большинство. Математические познания незначительной части людей дошли до эпохи Средневековья, а уровня математики XVIII века не достигает и один на тысячу… Но расстояние между теми, кто идет в авангарде, и необозримой массой путников все возрастает, процессия растягивается, и идущие впереди отдаляются все более и более. Они скрываются из виду, их мало кто знает, о них рассказывают удивительнейшие истории.
Находятся и такие, кто просто не верит в их существование».«Растянутость шествия всего человечества» особенно ощутима, когда речь заходит не о рецептурной, алгоритмической, а об «идейной» стороне математики.
С незапамятных времен математические рассуждения считаются общепризнанным эталоном доказательности, достойным всяческого подражания (достаточно упомянуть «Этику» Спинозы, «изложенную на геометрический манер», или «Математические начала натуральной философии» Ньютона). Строгость математических доказательств, непреложность получаемых с их помощью выводов, незыблемость математических истин вошли в поговорку. Но прописные истины, подобно разменной монете, от частого употребления стираются и теряют в весе. Доверять им по меньшей мере неосмотрительно, а получить достоверную информацию о действительном положении вещей нелегко не только для человека далекого от математики, но и для математика, не занимающегося специально проблемами оснований математики и математической логики. Те, кто, желая похвалить обоснованность чьей-либо аргументации, с легкостью называют ее математически строгой и безупречной, как правило, не в состоянии объяснить, что означает «доказать», почему доказательство «доказывает», или ответить, всякое ли утверждение можно доказать или опровергнуть. Подобные вопросы способны поставить в тупик и несравненно более искушенного в математике нематематика, который умеет вычислить значение истинности таких высказываний, как «Речка движется и не движется», или импликации «“Если” гром не грянет, “то” мужик не перекрестится», знает, чем исключающее «или» (Либо пан, либо пропал) отличается от неисключающего (Надобно либо уменье, либо везенье, «а лучше всего и то, и другое»), постиг различие между причинно-следственной связью и импликацией и усвоил немало других премудростей алгебры логики.