Классическая (шенноновская) теория информации измеряет количество информации, заключённой в случайных величинах. В середине 1960-х годов А.Н. Колмогоров (и другие авторы) предложили измерять количество информации в конечных объектах с помощью теории алгоритмов, определив сложность объекта как минимальную длину программы, порождающей этот объект. Это определение послужило основой для алгоритмической теории информации, а также для алгоритмической теории вероятностей: объект считается случайным, ...
Классическая (шенноновская) теория информации измеряет количество информации, заключённой в случайных величинах. В середине 1960-х годов А.Н. Колмогоров (и другие авторы) предложили измерять количество информации в конечных объектах с помощью теории алгоритмов, определив сложность объекта как минимальную длину программы, порождающей этот объект. Это определение послужило основой для алгоритмической теории информации, а также для алгоритмической теории вероятностей: объект считается случайным, если его сложность близка к максимальной. Предлагаемая книга содержит подробное изложение основных понятий алгоритмической теории информации и теории вероятностей, а также наиболее важных работ, выполненных в рамках «колмогоровского семинара по сложности определений и сложности вычислений», основанного А. Н. Колмогоровым в начале 1980-х годов. Книга рассчитана на студентов и аспирантов математических факультетов и факультетов теоретической информатики. Книга «Колмогоровская сложность и алгоритмическая случайность» авторов Андре Мари де Шенье, Николай Верещагин, Успенский В.А. оценена посетителями КнигоГид, и её читательский рейтинг составил 0.00 из 10.
Для бесплатного просмотра предоставляются: аннотация, публикация, отзывы, а также файлы для скачивания.
Рецензии на книгу
Написано 0 рецензий