Читать онлайн «Задачник-практикум по высшей алгебре»

Автор Александр Солодовников

ГЛАВНОЕ УПРАВЛЕНИЕ ВЫСШИХ И СРЕДНИХ ПЕДАГОГИЧЕСКИХ УЧЕБНЫХ ЗАВЕДЕНИЙ МИНИСТЕРСТВА ПРОСВЕЩЕНИЯ РСФСР М. М. ГЛУХОВ и А. С. СОЛОДОВНИКОВ ЗАДАЧНИК-ПРАКТИКУМ ПО ВЫСШЕЙ АЛГЕБРЕ 1969 ГЛАВНОЕ УПРАВЛЕНИЕ ВЫСШИХ И СРЕДНИХ ПЕДАГОГИЧЕСКИХ УЧЕБНЫХ ЗАВЕДЕНИЙ МИНИСТЕРСТВА ПРОСВЕЩЕНИЯ РСФСР Московский государственный заочный педагогический институт М. М. ГЛУХОВ и А. С. СОЛОДОВНИКОВ ЗАДАЧНИК-ПРАКТИКУМ ПО ВЫСШЕЙ АЛГЕБРЕ ИЗДАНИЕ ВТОРОЕ, ДОПОЛНЕННОЕ ДЛЬ СТУДЕНТОВ-ЗАОЧНИКОВ ФИЗИКО-МАТЕМАТИЧЕСКИХ ФАКУЛЬТЕТОВ ПЕДАГОГИЧЕСКИХ ИНСТИТУТОВ ИЗДАТЕЛЬСТВО „ПРОСВЕЩЕНИЕ" Москва — 1969 Одобрено кафедрой математики Московского государственного заочного педагогического института ПРЕДИСЛОВИЕ КО ВТОРОМУ ИЗДАНИЮ Настоящее второе издание задачника-практикума составлено в соответствии с обновленной программой курса высшей алгебры в педагогических институтах. Каждый параграф (за исключением первого, посвященного определителям второго и третьего порядков) начинается с достаточно подробного решения нескольких типичных задач данного раздела. Затем следуют упражнения для самостоятельной работы студента. Хотя в большинстве случаев решение сопровождается необходимыми пояснениями теоретического характера, эти пояснения не должны и не могут заменить учебника. Наиболее подходящими учебниками мы считаем: Л. Я. О куне в. Высшая алгебра. М. , „Просвещение", 1966; А. Г. К у р о ш. Курс высшей алгебры. М. , „Наука", 1968 (последний содержит много материала, выходящего за пределы программы). Авторы не сочли необходимым сопроводить каждый параграф задачника- практикума указаниями на соответствующие места в учебнике. Эти сведения сообщаются студентам лектором или даются в методических указаниях к курсу. По сравнению с первым изданием существенно увеличен объем задачника.
Добавлены § 13—18, от- носящиеся к абстрактным линейным пространствам, а также к евклидовым пространствам и квадратичным формам. Более логично расположен и материал из первого издания. При работе над задачником были использованы следующие пособия: И. В. Проскуряков. Сборник задач по линейной алгебре (М. , Физматгиз, 1962) и Д. К. Фаддеев и И. С. Соминский. Сборник задач по высшей алгебре (М. , Гостехиздат, 1956). Авторы Часть I ЛИНЕЙНАЯ АЛГЕБРА 1 1 2 1 3 4 a+b a—b cos a sin а . ь^ 1 * 3 —4 1. ' b) 1 5 2 1' a—b 1 a+b 1 —sin а cos а ; d) |; f) а —Ь 6 а ? sin a cos а sin p cos p ; g) i i а 6 § 1. ОПРЕДЕЛИТЕЛИ ВТОРОГО И ТРЕТЬЕГО ПОРЯДКОВ Упражнения 1. Вычислить определители: а) с) е) 2. Доказать, что определитель второго порядка равен нулю тогда и только тогда, когда одна из его строк пропорциональна другой. То же самое для столбцов. 4. Доказать, что значение дроби —гг^ (где по крайней мере одно из чисел с, d отлично от нуля) тогда и только тогда не зависит от значения х, ког- да|° \ = 0. 5. Доказать, что квадратный трехчлен ах%-\-2Ьх-\с тогда и только тогда будет полным квадратом, когда а Ъ Ь с 6.