Читать онлайн «Если бы числа могли говорить. Гаусс. Теория чисел»

Автор Антонио Руфиан

Antonio Rufian Lizana

Если бы числа могли говорить. Гаусс. Теория чисел

Наука. Величайшие теории Выпуск № 8, 2015

Если бы числа могли говорить. Гаусс. Теория чисел.  

Еженедельное издание

Пер. с исп. — М. : Де Агостини, 2015. — 168 с.

ISSN 2409-0069

© Antonio Rufian Lizana, 2012 (текст)

© RBA Collecionables S. A. , 2012

© ООО «Де Агостини», 2014-2015

Введение

Если бы среди профессиональных математиков был проведен опрос, в котором попросили бы составить список из десяти самых выдающихся и влиятельных математиков в истории, мы уверены, что почти все они включили бы в него Карла Фридриха Гаусса. Эта гипотеза (как мы увидим далее, выдвигать гипотезы — метод работы, очень характерный для математики) основана на двух причинах. Первая — огромная важность его вклада в науку. Вторая причина — это широта тем, к которым Гаусс с огромным успехом проявил свой интерес. Сегодня математика — настолько обширная наука, что те, кто посвящает себя ей, глубоко знают только часть, близкую к области их специализации. Однако гений Гаусса позволил ему продвинуться почти во всех сферах математики. Следовательно, специалисты как по математическому, так и по числовому анализу, как геометры, так и алгебраисты, статистики или даже специалисты по математической физике видят в Гауссе «одного из своих».

Мы очень часто пользуемся такими определениями, как «вундеркинд» или «математический гений». Мало кто из математиков мог бы возразить против того факта, что эти эпитеты применимы к Гауссу.

Число новых идей и открытий, к которым пришел этот немецкий математик еще до того, как ему исполнилось 25 лет, кажется необъяснимым.

Гауссу, сыну бедных родителей, удалось воспользоваться своим математическим талантом. Он родился в эпоху, когда математика еще была привилегированной сферой деятельности, которую финансировали придворные и меценаты или которой в свободное время занимались любители, такие как Пьер Ферма. Покровителем Гаусса был Карл Вильгельм Фердинанд, герцог Брауншвейгский, что позволило ученому посвятить себя призванию без необходимости зарабатывать на жизнь другим, более экономически выгодным делом. В качестве благодарности Гаусс посвятил покровителю свою первую книгу, «Арифметические исследования» (1801), и таким образом имя герцога оказалось связанным с одним из основных трудов в истории математики.

Гаусс жил в эпоху необычайных политических и социальных потрясений. Отрочество математика совпало с Великой французской революцией — ему было 12 лет, когда была взята Бастилия. Он пережил подъем Наполеона в молодости и его разгром при Ватерлоо в 38 лет. Он застал Мартовскую революцию в Германии в 1848 году в возрасте более 70 лет. В это время произошла первая индустриальная революция, которая оказала очень сильное воздействие на политическую и социальную жизнь Европы. Развитие промышленности позволило осуществить эксперименты, невозможные до этого времени, с телескопами и другими оптическими инструментами. Как мы увидим, все эти события повлияют на жизнь Гаусса.

К счастью, коллекция его трудов сохранилась в достаточно полном виде; многие из важных писем математика были опубликованы. Однако Гаусс трепетно относился к своему первенству в математических открытиях и даже использовал шифр, чтобы защитить их. По мнению некоторых исследователей, нераспространенность его работ вызвала отставание в развитии науки на целых полвека: если бы Гаусс позаботился о том, чтобы опубликовать хотя бы половину своих результатов, и не шифровал бы так тщательно свои объяснения, возможно, математика развивалась бы быстрее. Математический дневник Гаусса, хранившийся в его семье, стал доступен публике только в 1898 году. Его изучение подтвердило, что ученый доказал, не публикуя, многие результаты, которые другие математики пытались получить в течение всего XIX века. Гаусс всегда утверждал, что математика — это как архитектурное произведение: архитектор никогда не оставит строительные леса, чтобы люди не видели, как было построено здание. Естественно, такой взгляд на науку не способствовал лучшему пониманию его трудов коллегами-современниками.