Когда мы сгинем в будущем, как дым,
И снова скорбь людскую ранит грудь,
Ты скажешь поколениям иным:
«В прекрасном — правда, в правде — красота.
Вот знания земного смысл и суть».
Предисловие
На календаре 13 мая 1832 года. В рассветной дымке два молодых француза стоят друг против друга с пистолетами в руках. Дуэль — из-за молодой женщины. Выстрел; один из юношей падает смертельно раненным на землю. Ему всего 21 год; перитонит убивает его через два дня, и его хоронят в общей могиле. Одна из наиболее важных идей в истории математики и науки едва не погибает вместе с ним.
Оставшийся в живых дуэлянт так и остался неизвестным; погибший же — Эварист Галуа, политический революционер, одержимый математикой. В полном собрании его работ едва наберется шестьдесят страниц, и тем не менее наследие Галуа произвело революцию в математике. Он изобрел язык, позволяющий описывать симметрии в математических структурах и выводить их следствия.
Сегодня этот язык, известный как «теория групп», используется во всей чистой и прикладной математике, причем отвечает за формирование закономерностей в физическом мире. Симметрия играет центральную роль на передовых рубежах физики, в квантовом мире сверхмалого и релятивистском мире сверхбольшого. Симметрия может даже проложить дорогу к долгожданной «Теории Всего» — математическому объединению двух ключевых направлений в современной физике. И все это началось с простого вопроса по алгебре — вопроса о решениях математических уравнений, то есть о нахождении «неизвестного» числа на основе нескольких математических подсказок.
Симметрия — это не число и не форма, но специальный вид
Эта идея — серьезно расширенная и усовершенствованная — лежит в основе того, как современная наука понимает вселенную и ее происхождение. Теория относительности Альберта Эйнштейна основана на принципе, согласно которому законы физики должны оставаться неизменными во всех точках пространства и с течением времени. Другими словами, законы должны быть симметричны относительно движений в пространстве и течения времени. Квантовая физика говорит нам, что все во вселенной состоит из набора очень маленьких «фундаментальных» частиц. Поведение этих частиц управляется математическими уравнениями — законами природы, и эти законы снова обладают симметриями. Частицу можно математически преобразовать в совсем другие частицы, и эти преобразования также оставляют законы физики неизменными.
Все эти концепции — как и самые последние, относящиеся к рубежам современной физики, — не были бы открыты без глубокого математического понимания симметрии. Такое понимание пришло из чистой математики; роль симметрии в физике проявилась позднее. Чрезвычайно полезные идеи могут возникать из чисто абстрактных рассуждений — нечто вроде того, что физик Юджин Вигнер назвал «непостижимой эффективностью математики в естественных науках». Когда дело касается математики, мы порой получаем на выходе больше, чем вкладывали изначально.